• Home
  • Office of Education Research
  • National Institute of Education

singteach
Follow Us:

  • Home
    • About
    • Contact Us
    • Editorial Team
  • Current Issue
  • Previous Issues
    • Issue 74 (Sep 2020)
    • Issue 73 (Jun 2020)
    • Issue 72 (Mar 2020)
    • Issue 71 (Dec 2019)
    • Issue 70 (Sep 2019)
    • Issue 69 (Jun 2019)
    • View all
  • Topics
    • COVID-19
    • Home-based learning
    • Virtual learning
    • Technology
    • View All
  • Virtual Staff Lounge
  • Resources
    • Knowledge Resource Bank


Home › Issue 27 Nov / Dec 2010 › Fostering Collaborative Decision Making in the Math Classroom

Fostering Collaborative Decision Making in the Math Classroom

by Ng Kit Ee Dawn

What types of tasks can teachers use to enhance collaborative learning in the Math classroom? And how does working in groups enable students develop mathematical decision-making skills? Find out how contextualized tasks can help.

Article highlights
  • What is the value of contextualized tasks for mathematical learning?
  • How can such tasks help to foster collaborative decision making?
  • What difficulties do teachers need to look out for?

Contextualized tasks are mathematical tasks embedded in the experiences of students. They are open-ended and non-routine, and may be interdisciplinary in nature.

Project work, application tasks and mathematical modelling tasks are examples of contextualized tasks.

Such tasks help students to relate school-based learning with real-life use of mathematics. They provide opportunities for flexible, adaptive applications of what students know.

The knowledge and skills that students bring to the task, whether taught or self-discovered, determines their personal interpretations of the context.

Mathematical Learning in Context

Contextualized tasks help students learn important and interlinked mathematical skills, such as:

  • making sense of context (e.g., drawing assumptions and specifying conditions or constraints);
  • making connections between mathematical concepts and skills and real-world needs; and
  • making appropriate and reasonable mathematical decisions based on the contextual demands.

Students also learn collaborative skills as they often have to work in groups when dealing with contextualized tasks. This encourages them to learn with and from one another.

A research study was carried out to investigate how students apply mathematical concepts and skills to a contextualized task.

Two aspects of the study are described: the difficulties students faced during mathematical decision making; and effective strategies for interpersonal monitoring of mathematical thinking during group collaboration.

Using Contextualized Tasks in the Math Classroom
A total of 398 Secondary 2 students in the Express and Normal (academic) streams from three Singapore government schools participated in this study (Ng, 2009).

The students had to work in groups of four to complete an interdisciplinary project over a 14-week period. They were tasked to design an environmentally friendly building in a location of their choice in Singapore.

They met with their facilitating teachers on a weekly basis and were given mini-tasks to complete along the way. Three of the mini-tasks required them to apply mathematical knowledge and skills:

1. deciding on the design, size, location, features and facilities of the building;
2. calculating the cost of fitting out an area in the building; and
3. making scale drawings of the building.

Each group also had to construct a physical model of their building according to their scale drawings.

Surveys were administered to consenting participants. Additional data was gathered through interviews, lesson observations and video-taped lessons of 10 voluntary groups (5 groups from each stream) across the 3 schools.

Understanding Students’ Mathematical Difficulties

The students were found to have difficulties in at least three areas: spatial visualization; awareness of the purpose and use of scale drawings; and integration of real-world knowledge with mathematical decision making.

Difficulties with spatial visualization

Some students had difficulty making realistic and reasoned estimations of lengths and areas. One student suggested that the dimensions of the school hall floor should be 5m by 5m. A group member questioned how the entire school population would fit in an area of 25m2 during weekly assemblies.

Some students could not visualize how the various views of the building (e.g., top, side, front), when put together, would form a coherent image of the whole building.

Limited awareness of the use of scale drawings

Several students had difficulties distinguishing between scale drawings and measured drawings (i.e., drawings with only dimensions indicated). There was also evidence that they did not understand the purpose of scale drawings. Some groups made unrealistic scale drawings from which they could not make physical scale models.

Lack of integration of real-world knowledge

A few students did not apply their understanding of furnishings and budgeting to the decisions they made. For example, one student insisted on having a bathtub in a school toilet, to the intense objection of group members who felt this was unrealistic and out of the budget.

Interpersonal Monitoring of Mathematical Thinking

As the students worked together, they also engaged in interpersonal monitoring of mathematical thinking.

These strategies were identified based on an analysis framework adopted for this study, which drew upon other established frameworks (Artzt & Armour-Thomas, 1992; Goos, 2002; Schoenfeld, 1985).

Students helped to monitor each other’s mathematical thinking by questioning their group members on:

  • the repertoire of mathematical knowledge and skills they could bring to the project;
  • whether there was important information missing in the given project description;
  • the suitability of their mathematical approaches;
  • the progress in their chosen approaches; and
  • The appropriateness, logic and accuracy of their decisions and calculations.

Providing Effective Scaffolding

These findings can help teachers facilitate mathematical learning more effectively when using contextualized tasks.

For example, teachers can tap the potential of contextualized tasks through careful and purposeful scaffolding. Scaffolding can focus on the interlinked aspects of mathematical learning highlighted above.

Teachers can also encourage group members to question each other critically in order to activate effective interpersonal monitoring of mathematical thinking.

References
Artzt, A. F., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137-175.

Goos, M. (2002). Understanding metacognitive failure. Journal of Mathematical Behavior, 21(3), 283-302.

Ng, K. E. D. (2009). Thinking, small group interactions, and interdisciplinary project work. Unpublished doctoral dissertation, University of Melbourne, Australia.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.

About the author
Dawn Ng lectures in Mathematics Education at NIE. Her research interests include the use of contextualized tasks for learning Math, metacognitive strategies during group collaborations, and the role of assessment in teaching and learning.
  • Print Article
  • Download PDF
Next

Articles you might like

  • Calculated for Success in Math

    Imagine a Math classroom where all students answer freely without fear of being wrong, and …

  • Problem Finding and Mathematical Thinking

    Many people believe creativity begins with finding many solutions to a problem. What if that’s …

  • New Ways to Learn

    Clear delivery of content used to be equated with good teaching. The teachers of today, …

  • Formula for a Good Math Teacher

    If technology can replace the human teacher, does that make the teacher obsolete? Certainly not, …

  • Understanding Students’ Misconceptions in Learning

    by Choy Chan Hong, Irving Quah, Tan Wen Dee and Toh Pui Yhing If we …

  • Helping Low Attainers to Keep Up

    Singapore pupils ace Math in international studies so often that it’s easy to forget there …

  • Transforming Math Lessons with New Technology

    Traditional math classrooms typically see students quietly working hard at solving problems as the teacher …

  • Strong Links between Self-Confidence and Math Performance

    Many studies have shown that there is a strong relationship between students’ self-belief and their …

  • Through the Lens of Research

    Teaching Fellow Tan Liang Soon is always looking for possibilities. How can learning be improved? …

Most Read Articles

  • Literature in the 21st Century 131,674 views
  • The Importance of Effective Communication 81,138 views
  • Self-expression through Art 15,343 views

Subscribe

I agree to the Terms & Conditions

Tags

Alternative assessment Assessment feedback Assistive technology Character-building Character education Classroom engagement Classroom Perspectives Classroom relationship Cognitive diagnostic assessments Dilemma-based Learning Disciplinary literacy Field trip Fieldwork Formative assessment History Holistic education Hot Topic Humanities Ideas Imagination Inclusive education Inspire Learner preferences Learning Learning environment Literature Review Multidisciplinary learning Music education Peer assessment People Redesigning Pedagogy Conference Research in Action Science Self-determination theory Share Student agency Teacher-student relationship Teacher research Teachers' Conference Test construction Test validity The Big Idea Trial and error Voices Working memory

research within reach
NTU Registration No: 200604393R
  • Sitemap
  • Privacy Statement
  • Terms of Use
  • Supported by Marshall Cavendish Education
© 2021 NIE / NTU